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Abstract
We study the self-stresses experienced by the single plasma sheet modelled in
the preceding paper, and determine the exact mean-squared Maxwell fields in
vacuum around it. These are effects that probe the physics of such systems
further than do the ground-state eigenvalues responsible for the cohesive energy
β; in particular, unlike β they depend not only on the collective properties but
also on the self-fields of the charge carriers. The classical part of the interaction
between the sheet and a slowly moving charged particle follows as a byproduct.
The main object is to illustrate, in simple closed or almost closed form, the
consequences of imperfect (dispersive) reflectivity. The largely artificial limit
of perfect reflection reduces all the results to those long familiar outside a
half-space taken to reflect perfectly from the outset; but a careful examination
of the approach to this limit is needed in order to resolve paradoxes associated
with the surface energy, and with the mechanism which, in the limit, disjoins
the two flanking half-spaces both electromagnetically and quantally.

PACS numbers: 03.65.−w, 03.70.+k, 11.10.−z, 12.20.−m, 36.40.Gk,
42.50.Pq

1. Introduction

1.1. Background and motivation

The preceding paper (Barton 2005, referred to as B.V) determined the cohesive Casimir
energies β for a simple fluid model of an infinitesimally thin flat plasma sheet occupying the
xy plane. Here we extend this study to some effects governed directly by the Maxwell fields,
which reveal more of the physics than could be learned merely through the ground-state energy
eigenvalues. The model was introduced in B.V, whose sections 1 and 2 are taken as read. We
recall that the fluid has charge and mass e/a2,m/a2 per unit area, and define a dimensionless
distance ζ in terms of the coupling-strength parameter q:

q ≡ 2πe2/mc2a2 = 2πr0/a
2, ζ ≡ 2qz. (1.1)
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From the mean-squared fields (and from any energy densities or energies that may enter
the discussion) we drop, as in B.V, the components that would be present even if the sheet were
not. They are recognized as those surviving in the limit z → ∞, i.e. as the terms independent
of z. For convenience we call this step the vacuum subtraction. Presently we shall see that,
perhaps paradoxically, it is not always equivalent to dropping terms formally of order q0.

Switching the investigation to the fields requires three major shifts in one’s point of
view. They concern (i) the so-called Born subtractions which link β to the total energy (B.V,
sections 3.1 and 3.3.1); (ii) the role of the odd-parity normal modes, which are affected by
the sheet only through their overall phase (B.V, section 2.2), and are thereby irrelevant to β,
but which remain fully effective regarding the fields; and (iii) the Debye cutoff K ∼ 1/a

on surface-parallel wavenumbers k, essential to β, but for our present purposes demonstrably
inappropriate.

(i) The Born subtractions remove, from the total energy of the sheet, the components of order
q, identified in B.III (Barton 2004a) and again in B.V as the self-energies of the charge
carriers, i.e. the self-energy of the given amount of fluid but at infinite dilution. These are
manifestly irrelevant to β. But to the Maxwell fields in vacuo (nonzero z) the self-fields
of the fluid contribute in full, whence Born subtractions are not required and not allowed.

(ii) Odd- and even-parity modes must now be treated on an exactly equal footing, in spite of
the fact that the amplitudes of the odd modes do not explicitly feature the coupling strength
q at all. The most forceful if not physically the most fastidious demonstration considers
the perfect-reflector limit q → ∞ (appendix F), where the two parities contribute equally
to the mean-square fields: dropping the odd-parity modes (as if the vacuum subtraction
were misinterpreted as a blanket prescription to drop terms of order q0) one would be
left with only half the archetypal expressions (F.6). Similarly absurd conclusions follow,
albeit very laboriously, for finite q.

(iii) Finally, except for a few asides in the appendices, we shall dispense with cutoffs, i.e. admit
all values of k. While a Debye cutoff is unquestionably proper to effects governed, like
β, by the collective properties of the sheet, it is unwarranted for the effects we propose to
study, which depend also on the self-fields. Other types of cutoff might perhaps emerge
from some future adaptation of a fully relativistic theory, giving mutually consistent rules
for contributions from self-fields and from collective modes (like our surface modes). But
such rules would have to differ drastically from a blanket restriction k � K ∼ O(1/a),
seeing that a harks back to the spacing between the charge carriers of some underlying
granular material. For instance, it would plainly be absurd to impose a simple Debye-
type condition on the odd-parity modes, which have no explicit dependence at all on the
interaction parameter q.

Points (i) and (iii) are coupled through the fact that our model produces most answers as
integrals over k. Born subtractions soften the integrands at infinity, making the end result for
β less sensitive to large k � 1/a, and by implication to small z � a, than it would have been
unsubtracted. In particular this is true for the energy density u residing in the Maxwell field,
i.e. off the sheet, and for its integral U:

u(z) ≡ 〈E2 + B2〉/8π, U ≡ 2
∫ ∞

0
dz u, (1.2)

where 〈· · ·〉 denotes exact ground-state expectation values. Thus, though a cutoff is essential
for convergence, β is relatively insensitive to its finer details. Conversely, the unsubtracted
expression for u is trustworthy at best for z � a. For smaller z it is quite strongly model
dependent; any naive exclusion of k > K would distort u (z � a) out of all recognition; and
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rather than try to speculate blindly about more plausible cutoffs, it seems better to proceed
without any at all, pending eventual improvement through more realistic models.

Accordingly, we shall simply disregard density components proportional to δ(z): they
are unobservable off the sheet, and irrelevant to the in principle measurable energy β already
known from B.V. By the same token we now can, and must, tolerate components diverging
nonintegrably as z → 0. Examples occur, respectively, in appendix F.1.1, and throughout
section 3.

To illustrate the importance of clarity on such questions, we recall that in principle 〈E2〉
say is measurable via the Casimir–Polder approximation VCP to the potential V between the
sheet and an atom at a distance z:

V →
z/��1

− 1

2
�〈E2〉→

ζ�1
VCP ≡ −3h̄c�

8πz4
, (1.3)

where � is the electrostatic polarizability of the atom, � is of the order of its dominant
absorption wavelengths, and where we have anticipated the results of section 3 for limζ→∞〈E2〉.

In brief, the body of this paper dispenses with cutoffs altogether. But a Debye cutoff
will be re-admitted temporarily in some of the appendices, in cases where there is scope for
comparing the results for finite K with expressions already ensconced in the literature on other
models. Such calculations will require the precise definitions of K, of the dimensionless ratio
X (B.V, section 2.1) and of a second dimensionless distance Z:

K ≡
√

4π/a, X ≡ K/q, Z ≡ 2Kz = Xζ. (1.4)

1.2. Preview and summary

All our calculations start from the fields E and B quantized directly in terms of exact
eigenmodes, as in section 2.2 of B.V. Except in section 4, potentials are neither needed
nor used, whence the results are automatically (and trivially) gauge independent.

Section 2 writes down the operator fz for the pressure experienced by the sheet; shows
that it would vanish but for the odd-parity modes; shows that

〈
f 2

z

〉
is nonzero even though

〈fz〉 is; indicates (without evaluating it) the correlation function needed to determine the
pressure fluctuations generally; and writes down the tangential (shear) stress operator f‖. In
the nonretarded limit c → ∞, the operator fz vanishes but f‖ survives.

Section 3 determines 〈E2〉 and 〈B2〉, which emerge as functions of the scaled variable ζ .
Section 3.2 finds the contribution from T E modes. Section 3.3 finds the total contribution
from T M modes, including both T M photons and surface modes. This is a common strategy
in such problems: it yields the end result as that part of a photon-derived contour integral
that encircles just the branch cut of its integrand, to the exclusion of the residue from a pole,
which is cancelled identically by the contribution from the surface modes. Section 3.4 looks
at the general pattern of the results, best appreciated by concentrating on their asymptotics.
The expressions for large enough ζ are of course the same in the realistically approachable
limit where z → ∞ at fixed q, and in the fanciful perfect-reflector (PR) limit as q → ∞ at
fixed z (see also appendix F). These asymptotic results, outside our thin sheet, coincide with
the traditional ones that apply, in either of the corresponding limits, outside a half-space1. The

1 For perfect reflectors, Bordag (2004) suggests that, on the contrary, the traditional expression (1.3) for VCP applies
only outside half-spaces, and fails outside thin enough sheets. His reasoning starts with the behaviour of Ez as z → 0,
but appears to turn, eventually, on choices of gauge. The present writer is unconvinced by the arguments about Ez,
and (obviously) disagrees with the conclusions: the PR limit of our model yields (1.3) in a manifestly gauge-invariant
way, for a thin sheet of precisely the kind for which Bordag claims a different result (smaller by a factor 13/15). He
differs also about the first term on the right of our equation (4.2). Appendix F.2 below may have some bearing on
these disagreements, which this is clearly not the place to pursue in detail.
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agreement is interesting because for half-spaces (outside one or between two) experiments
have verified 〈E2〉, effectively through VCP, to an accuracy of roughly 10% (see Sukenik et al
(1993), commented by Maddox (1993); the review by Hinds (1994); Sandoghdar et al (1996);
Landragin et al (1996)).

Section 4 considers the interaction between the sheet and a slow charged particle,
determining the part that is independent of Planck’s constant. This part consists of the familiar
image potential for a perfect reflector (irrespective of the value of q), plus another term �

proportional to the squared components of the particle momentum. This calculation does
require one to chose a gauge, and we use the pseudo-Coulomb gauge where ∇ · A vanishes
except on the sheet. The result for � is a function only of ζ ; hence it too yields one and the
same expression as z, or q, or both, tend to infinity. Surprisingly perhaps, this indifference
to the order of the limits appears to depend on dispersion: for a nondispersive dielectric
half-space, Eberlein and Robaschik (2004) obtain different results depending on whether the
large-distance limit or the perfect-reflector limit is taken first.

Appendices A and B deal with mathematical technicalities. The other appendices study
consequences of possibly interesting but decidedly artificial restrictions or limits imposed on
the physics of the model.

Appendix C considers the contributions 〈E2〉sp, 〈B2〉sp, and the corresponding usp just
from the surface modes. Since they are given by single rather than by double integrals (over
k but with no independent surface-normal wavenumber), they are easy to evaluate even under
a cutoff. They are worth a glance because B.V has shown that (a) they require no Born
subtractions, while (b) they dominate β. Thus Usp dominates that part of β that resides off
the sheet (namely the field energy, as opposed to the kinetic energy of the fluid). We show
that Usp is localized essentially within distances of order a from the sheet; which might be
construed as a plausibility argument that the same is true for the Born-subtracted field energy
even including the contributions from the photon modes. Appendix D determines uNR and
the localization of UNR in the nonretarded model (B.V, appendix B), where surface plasmons
are the only excitations.

Appendix E addresses effects that a cutoff would have on the unsubtracted mean-square
fields. A complete calculation would be intolerably tedious, and the physics of the answers
would be dubious anyway; hence we settle for just two conclusions. First, when Z � 1,
corrections to the results from section 3 are of relative order exp(−Z), i.e. exponentially
small. Second, as z → 0 one finds that 〈E2〉 and 〈B2〉 continue to diverge even under the
cutoff, with equal and opposite leading terms proportional respectively, to ±h̄cq4X2/2πζ .
Only u remains finite, its leading term the same as the nonretarded surface-mode contribution
found in appendix D.

The last appendix, F, is concerned with 〈E2〉 and 〈B2〉 near a perfectly reflecting sheet.
As explained in B.V, the problems raised by perfect reflection are largely artificial: we attend
to them not for approximations to realizable physical systems, but because of their many
links to the traditional literature on Casimir effects, and because they are responsible for
misconceptions long past their sell-by date. Appendices F.1.1 and F.1.2 consider reflectors
taken as perfect from the outset, without and with cutoff, respectively. Appendix F.2 then
considers perfect reflection approached as a limit. The limit is shown to turn the flanking
regions, z ≶ 0, into electromagnetically and quantally disjoint systems, each with its own
Hilbert space, so that the overall Hilbert space reduces to the direct product of the mutually
commuting Hilbert spaces for the two regions. The demonstration resolves a paradox by
showing how this happens even though the odd-parity modes remain unaffected by the limit,
as they do because they know nothing about the reflectivity.
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2. Stresses

The pressure on the sheet (normal force per unit area) may be written as a sum of electric and
magnetic contributions, fz = fez + fmz. Evidently

fez = Ēzσ = Ēz

1

4π
discont(Ez), Ēz ≡ 1

2
[Ez(z = 0+) + Ez(z = 0−)] , (2.1)

where we have used Gauss’s law. But Ēz is nonzero only in odd-parity T M modes, and σ only
in even-parity T M . Moreover, in these modes discont(Ez) = 2Ez(0+), and Ēz = Ez(0+).
Hence, in an obvious shorthand, and indicating also the magnetic pressure fmz = (J × B)z,
one has

fez = 1

2π
ET M,−

z

(
ET M,+

z + Esp
z

)
, fmz = 1

2π
BT M,−

‖ ·
(

BT M,+
‖ + Bsp

‖
)

, (z = 0+).

(2.2)

The same expressions follow from the Maxwell stress tensor.
It is worth emphasizing that the pressure operator would vanish but for the odd-parity

modes, for all that they appear to be unaffected by the sheet. Thus the operator vanishes
identically in the NR model, where there are only surface modes (which are pure even-parity
T M). One can see this more directly from the fact that in the NR model the only forces are
Coulomb forces between charges confined to the sheet, which interact only tangentially.

For the special case of perfect reflection the pattern (odd modes) × (even modes) can be
foreseen directly from appendix F. Equation (F.12) there shows that, in an obvious shorthand
for the normal modes,

(−) × (+) ∼ (R − L) × (R + L) ∼ (R2 − L2), (2.3)

conformably to the sheet experiencing mutually independent (commuting) pressures on its
two faces.

The ground-state expectation values of both pressure operators vanish by symmetry; but
the pressure fluctuations do not vanish. To see this, we must first recall2 (Barton 1991a, 1991b)
that what is observable is not fz(t, s) itself, but only some average

f̃ z ≡
∫

dt

∫
d2s g(t, T )h(s, A)fz(t, s), (2.4)

where g and h are apparatus-dependent sampling functions over some finite time interval of
order T, and over some finite area of order A. Thus the measurable fluctuations read〈

f̃ 2
ez

〉 = 1

4π2

˜〈(
E

T M,−
z

)2〉 {〈 ˜(
E

T M,+
z

)2〉
+
〈(̃
E

sp
z

)2〉} 
= 0. (2.5)

It is easily verified that similar expectation values constructed from unaveraged squared
fields would be divergent, i.e. ill-defined. The underlying quantity is the correlation function
〈{fz(t, s), fz(t

′, s′)}+〉; for perfect reflectors it is obtainable from its analogue for a half-space
(Barton 1991b). For our plasma sheet it remains to be determined. In virtue of the fluctuation-
dissipation theorem, it features also in the theory of the radiative reaction experienced by our
plasma sheet when forced into nonuniform motion.

2 Our present notation differs from these references, which would have written the average f̃ z as ˜̄f z, and the
weighting functions g, h as f, φ, respectively. It is of the essence that f̃ z is an average of fz, which is bilinear in the
fields, rather than a bilinear constructed from fields averaged beforehand. In (2.5), the typography may have stopped
the tildes from extending right over the squared field components, as (2.4) shows that they should.
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Analogous reasoning yields the shear stress (tangential force per unit area), whose electric
and magnetic parts3 read

fe‖= Ē‖σ = 1

2π

(
ET M,+

z + Esp
z

) (
ET M,+

‖ + Esp

‖
)
, (z = 0+), (2.6)

fm‖ = (J × B)‖ = 1

2π
BT E,+

z

(
BT M,+

‖ + Bsp

‖
)
, (z = 0+). (2.7)

Here the odd modes play no role, and f‖ remains nonzero even in the NR model. In contrast, it
vanishes for perfect reflectors (appendix E), in virtue of the boundary conditions E‖ = 0 = Bz.

3. 〈E2〉 and 〈B2〉
3.1. Preliminaries

We study the total mean-squared fields, which we recall from section 1 are measurable in
principle, and not now subject to Born subtractions. In particular, the odd-parity modes now
contribute comparably with the even. Thus, though one might from curiosity consider the
energy density u and its integral U from (1.2), the integral is not very interesting, and there
is no reason why it should converge. In fact, without a cutoff (as in this section), U would
diverge at its lower limit, while appendix E finds that with a cutoff U is finite.

Evidently one must calculate separately the contributions of the exact normal modes, T E

and T M , even though for some purposes a subdivision according to ‖ and ⊥ field components
might be preferable. The method is illustrated by sketching the calculation of 〈E2〉, with 〈B2〉
merely quoted.

3.2. T E modes

The field expansions in B.V yield

〈E2〉T E = 2π

∫ ∞

0
dk k

∫ ∞

0
dp

h̄ω

2π2k2
{k2 sin2(pz) + k2 cos2(pz + η)} − (counterterm),

(3.1)

where the first (second) term comes from modes with odd (even) parity. The counterterm is
the corresponding quantity in the absence of the mirror, namely the component independent
of z. Hence the expression we want is found by setting

sin2(pz) = 1 − cos(2pz)

2
→ −cos(2pz)

2
, (3.2)

cos2(pz + η) = 1 + cos(2pz + 2η)

2
→ cos(2pz + 2η)

2
, (3.3)

where the arrows implement the vacuum subtraction explained in section 1.1. Using

(cos(2η), sin(2η)) = ((p2 − q2), (−2qp))

q2 + p2
(3.4)

3 One expects also a mechanical contribution fmech‖ from the kinetic energy of the fluid. In an ideal classical 2D
gas, the pressure (force across unit length) is just the kinetic energy per unit area, entailing 〈fmech‖〉 = −∇‖〈κop〉.
The spherical shell requires only the expectation value 〈κop〉 ≡ κ , which turns out to be essential for complying with
the principle of virtual work applied to changes of the radius, i.e. to deformations normal to the sheet ( B.III; and
Barton 2004b, referred to as B.IV, section 3.3). But it is unclear to the writer how the principle might be applied to
the uniform expansion of a flat sheet in its own plane.
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and changing to integration variables4 y = k/q, x = p/q, one eventually finds

〈E2〉T E = h̄cq4

ζ 4
J T E

E (ζ ), (3.5)

featuring the dimensionless form factor

J T E
E (ζ ) ≡ ζ 4

π

∫ ∞

0
dy y

∫ ∞

0
dx

√
x2 + y2

x2 + 1
{−cos(ζx) + x sin(ζx)} . (3.6)

The factors ζ±4 prove convenient later. Note that q4/ζ 4 = 1/16z4.
We choose ζ > 0, and in hindsight start5 by rearranging the integral over x. Write∫∞

0 dx . . . = (1/2)
∫∞
−∞ dx . . . , set

{− cos(ζx) + x sin(ζx)}
x2 + 1

= −Re

{
i
exp(iζx)

x + i

}
, (3.7)

and displace the integration contour into the upper half of the complex x-plane, where the
integrand has a branch cut from iy to i∞, but no poles. The new contour runs down just to
the left of the cut, and up again just to the right. Then

J T E
E = ζ 4

π

∫ ∞

0
dy y

∫ ∞

y

dx exp(−ζx)

√
x2 − y2

x + 1
. (3.8)

Observing that
∫∞

0 dyy
∫∞
y

dx . . . = ∫∞
0 dx

∫ x

0 dyy . . . , we now integrate over y:

J T E
E (ζ ) = ζ 4

3π

∫ ∞

0
dx exp(−ζx)

x3

x + 1

= − ζ 4

3π

∂3

∂ζ 3

∫ ∞

0
dx

exp(−ζx)

x + 1
= − ζ 4

3π

∂3

∂ζ 3
{exp(ζ )E1(ζ )} , (3.9)

J T E
E (ζ ) = 1

3π
{−ζ 4 exp(ζ )E1(ζ ) + ζ 3 − ζ 2 + 2ζ }, (3.10)

where E1(ζ ) = ∫∞
ζ

dt exp(−t)/t is the exponential integral. Asymptotically

J T E
E (ζ → ∞) = 1

π

{
2 − 8

ζ
+

40

ζ 2
− 240

ζ 3
+ · · ·

}
, (3.11)

J T E
E (ζ → 0) = 1

π

{
2

3
ζ − 1

3
ζ 2 +

1

3
ζ 3 +

1

3

[
γ + log(ζ )

]
ζ 4 . . .

}
, (3.12)

where γ � 0.5772 is Euler’s constant.
Similarly one finds

〈B2〉T E = h̄cq4

ζ 4
J T E

B (ζ ), J T E
B (ζ ) = −5J T E

E (ζ ). (3.13)

The ratio −5 (regardless of ζ ) is the same as for perfect reflectors (see appendix F).

4 There will be no occasion to confuse these new scaled variables with the Cartesian coordinates in the plane of the
sheet.
5 Appendix A shows that the same result follows if one starts by integrating over y.
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3.3. T M plus surface modes

Proceeding as for the T E modes, one is led straightforwardly to

〈E2〉T M = 2π

∫ ∞

0
dk k

∫ ∞

0
dp

h̄ω

2π2k2

(
ck

ω

)2

{[k2 cos2(pz) + p2 sin2(pz)]

+ [k2 sin2(pz + µ) + p2 cos2(pz + µ)]} − (counterterm), (3.14)

〈E2〉T M = h̄cq4

ζ 4
J T M

E (ζ ), (3.15)

J T M
E = ζ 4

π

∫ ∞

0
dy y

∫ ∞

0
dx

y2 − x2√
x2 + y2

{x2 cos(ζx) − x(x2 + y2) sin(ζx)}
[(x2 + y2)2 + x2]

. (3.16)

But from this point on the mathematics differ very significantly, reflecting the physical
difference that the sp modes behave like bound states in the T M channel, whereas the
T E channel has none.

Now, on preparing to evaluate
∫

dx . . . in (3.16) by contour integration, J T M
E becomes

J T M
E = ζ 4

π
Re
∫ ∞

0
dyy

1

2

∫ ∞

−∞
dx

y2 − x2√
x2 + y2

ix exp(iζx)

[x2 + ix + y2]
. (3.17)

In the upper-half complex x-plane, the integrand has the same branch cut as one had for T E,
but it also has a pole at

x = iy1, y1 = (−1 +
√

4y2 + 1)/2 = p̃(k = qy)/q < y. (3.18)

Accordingly

〈E2〉T M = 〈E2〉T M,pole + 〈E2〉T M,cut.

It turns out that

〈E2〉T M,pole = −〈E2〉sp :

in other words the contribution to 〈E2〉T M from the pole identically cancels the contribution
from the surface modes6. This is easy to verify either directly, or from equation (C.4) in the
no-cutoff limit Z1 → ∞ given by (C.5). Hence we define the total T M contribution as

〈E2〉T Mt ≡ 〈E2〉T M + 〈E2〉sp = 〈E2〉T M,cut ≡ h̄cq4

ζ 4
J T Mt

E .

Thus

〈E2〉 = 〈E2〉T E + 〈E2〉T Mt ≡ h̄cq4

ζ 4
JE, JE = J T E

E + J T Mt
E , (3.19)

and we need pursue only7 J T Mt
E . Readily enough one finds

6 This is a special case of perfectly general identities that operate in just the same way outside any dispersive mirror,
for any 〈F 2

i 〉, and for many other related quantities. One important example is the level shift of an atom near a
half-space of plasma, worked through by Babiker and Barton (1976). The cancellation operates separately for each
value of y, i.e. for any given surface-parallel wavevector k; hence it operates in the same way with as without a cutoff.
7 Fortunately so, because to evaluate the J T M directly one would have to integrate, very laboriously, along the real
x-axis.
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J T Mt
E = ζ 4

∫ ∞

0
dy y

∫ ∞

y

dx exp(−ζx)x
y2 + x2√
x2 − y2

1

[x2 + x − y2]
(3.20)

= ζ 4
∫ ∞

0
dx exp(−ζx)x

∫ x

0
dy y

y2 + x2√
x2 − y2

1

[x2 + x − y2]
(3.21)

= ζ 4

π

∫ ∞

0
dx exp(−ζx){−x2 + 2x5/2 tan−1(x1/2) + x3/2 tan−1(x1/2)}, (3.22)

having reversed the order of integration because the y integral in (3.21) is relatively easy
whereas the x integral in (3.20) would prove very awkward. We write the result as

J T Mt
E = ζ 4

π

{
−
[

2

ζ 3
+ A′(ζ )

]
+ 2A′′(ζ )

}
, (3.23)

in terms of the auxiliary function

A(ζ ) ≡
∫ ∞

0
dx exp(−ζx)x1/2 tan−1(x1/2) = −2

∂

∂ζ

∫ ∞

0
dx exp(−ζx) tan−1(x1/2) (3.24)

which is analysed in appendix B.
For B we merely quote the analogues of the initial (3.14) and of the final (3.22) for E:

〈B2〉T M = 2π

∫ ∞

0
dk k

∫ ∞

0
dp

h̄ω

2π2k2
{k2 cos2(pz) + k2 sin2(pz + µ)} − (counterterm),

(3.25)

〈B2〉T Mt = h̄cq4

ζ 4
J T Mt

B (ζ ), J T Mt
B (ζ ) = ζ 4

π

{
− 2

ζ 3
− A′(ζ )

}
. (3.26)

Note that the component [2/ζ 3 + A′(ζ )] is common to J T Mt
E and to J T Mt

B .
The asymptotic approximations are constructed with A′ and A′′ from appendix B, and

turn out to read

J T Mt
E (ζ → ∞) = 1

π

{
10 − 56

5ζ
+

216

7ζ 2
− 880

7ζ 3
+ · · ·

}
, (3.27)

J T Mt
B (ζ → ∞) = 1

π

{
−2 +

24

5ζ
− 120

7ζ 2
+

80

ζ 3
+ · · ·

}
; (3.28)

J T Mt
E (ζ → 0) = 1

π

{
15π3/2ζ 1/2

8
− 6ζ +

3π3/2ζ 3/2

8
− ζ 2

3
− ζ 3

15

+

[
2

1225
− 3

35
(γ + log(ζ ))

]
ζ 4 + · · ·

}
, (3.29)

J T Mt
B (ζ → 0) = 1

π

{
−2ζ +

3π3/2ζ 3/2

8
− ζ 2 +

ζ 3

3
+

[
− 2

25
+

1

5
(γ + log(ζ ))

]
ζ 4 + · · · .

}
.

(3.30)

The results for small ζ have been given to O(ζ 4), in order to identify those parts of the
mean-square fields that remain finite as ζ → 0.
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3.4. General patterns and asymptotics

We define

JE = J T E
E + J T Mt

E , JB = J T E
B + J T Mt

B , Ju ≡ JE + JB, (3.31)

where the suffix on Ju alludes to the energy density u from (1.2), but without the factor 1/8π .
Asymptotically (though in fact the series for low ζ converge):

JE(ζ → ∞) = 1

π

{
12 − 96

5ζ
+

496

7ζ 2
− 2560

7ζ 3
+ · · ·

}
, (3.32)

JB(ζ → ∞) = 1

π

{
−12 +

224

5ζ
− 1520

7ζ 2
+

1280

ζ 3
+ · · ·

}
, (3.33)

Ju(ζ → ∞) = 1

π

{
128

5ζ
− 1024

7ζ 2
+

6400

7ζ 3
+ · · ·

}
; (3.34)

JE(ζ → 0) = 1

π

{
15π3/2ζ 1/2

8
− 16ζ

3
+

3π3/2ζ 3/2

8
− 2ζ 2

3

+
4ζ 3

15
+

[
2

1225
+

26

105
(γ + log(ζ ))

]
ζ 4 + · · ·

}
, (3.35)

JB(ζ → 0) = 1

π

{
−16ζ

3
+

3π3/2ζ 3/2

8
+

2ζ 2

3
− 4ζ 3

3
−
[

2

25
+

22

15
(γ + log(ζ ))

]
ζ 4 + · · ·

}
,

(3.36)

Ju(ζ → 0) = 1

π

{[
15π3/2ζ 1/2

8
+

3π3/2ζ 3/2

4

]
− 32ζ

3
− 16ζ 3

15

−
[

96

1225
+

128

105
(γ + log(ζ ))

]
ζ 4 + · · ·

}
. (3.37)

For comparison, we anticipate from section 4 the surface-plasmon contribution without
cutoff (which, via J T Mt , is already included in the JE,B). One finds

J sp

E = 15π3/2ζ 1/2

8
+

3π3/2ζ 3/2

8
, J sp

B = 3π3/2ζ 3/2

8
, (3.38)

Ju ≡ J sp

E + J sp

B = 15π3/2ζ 1/2

8
+

3π3/2ζ 3/2

4
. (3.39)

Thus, at high ζ the surface modes by themselves yield no clues at all to the true results; but at
low ζ they supply the entire leading term of JE and thereby of Ju. In fact they then supply
both the terms with fractional powers of ζ .

Note also that, as ζ → ∞, the leading terms of J T E
E,B,J T Mt

E,B tally with the perfect-
reflector limits from appendix F, cancelling in the same way, so that Ju is of order 1/ζ , and
u � h̄c/10π2qz5. Accordingly, figure 1 plots (π/12)JE and −(π/12)JB , which approach
their perfect-reflector value of 1 as ζ → ∞; and also the combination (π/12)(JE + JB),
which vanishes as ζ → ∞, and for perfect reflectors would vanish everywhere.

Finally, reverting to u and U, equation (1.2), we can now verify what section 3.1 claimed
about integrability, and note also that u(z) is always positive (which appendix E shows it to
remain even under a cutoff). Though from our present point of view the sign of u is secondary,
it is sometimes studied on account of wider field-theoretic implications that negative energy
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Figure 1. The form factors for the mean-square fields without cutoff, as functions of ζ . Top
curve: (π/12)JE; middle curve: −(π/12)JB . These curves approach +1 as ζ → ∞. Bottom
curve: (π/12)Jf , where Jf ≡ JE + JB . This combination vanishes for perfect reflection. The
asymptotics are given by equations (3.32)–(3.34) as ζ → ∞, and by (3.35)–(3.37) as ζ → 0.

densities might have if they extended over appreciable regions of space. In particular, u has
been shown to be positive by Helfer and Lang (1999) everywhere outside a nondispersive half-
space; by Sopova and Ford (2002) everywhere outside a plasma half-space; and by Graham,
Olum and Schwartz-Perlov (2004) everywhere outside a solid nondispersive sphere. Our own
results extend these conclusions to our very simple model of a flat dispersive mirror; and it
seems likely that they could be extended also to the dispersive spherical shells considered in
B.III and B.IV.

4. The classical interaction between the sheet and a charged particle

Unlike all else in this paper, the interaction of the sheet with a charged point particle, at a
distance z and having charge Q, mass M and momentum P, will be derived only perturbatively,
and requires a Hamiltonian in canonical form, which in turn requires commitment to some
definite gauge. We choose the pseudo-Coulomb gauge (Barton 1977), which expresses our
quantized fields as E = −Ȧ/c, B = ∇ × A; then ∇ · A vanishes except on the sheet, and the
interaction Hamiltonian reads

Hint = −Q2/4 |z| − QA · P/Mc + Q2A2/2Mc2. (4.1)

The first term is the same as the classical image potential experienced by a stationary charge
near a perfect mirror (regardless of how well the plasma actually reflects, i.e. regardless of q).
For a slow particle, the pseudo-Coulomb gauge delivers the leading momentum-dependent
corrections through the energy shift calculated in second-order perturbation theory from the
middle term of Hint. These shifts, quadratic in P, likewise turn out to be free of h̄, i.e. purely
classical8; for a perfect mirror they stem wholly from T E photons, and read

�(PR) = (Q/Mc)2
(−P 2

z + P2
‖/2
)/

4z. (4.2)

8 The leading quantal shift (Q2/2Mc2)〈A2〉 is the kinetic energy forced on the particle by the zero-point oscillations
of the quantized E field: see, e.g., Barton (1989), appendix. As q → ∞ or as |z| → ∞ it becomes Q2h̄/4πMc2z2.
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For brevity we define9

�(P) ≡ {�z(z)P
2
z + �‖(z)P2

‖
}
. (4.3)

The first component is understood as shorthand for
{
�z(z)P

2
z + P 2

z �z(z)
}/

2: just how one
chooses to symmetrize affects only the quantal components of the shift, proportional to higher
powers of 1/z. The aim here is to determine � for our model, in order to complete the classical
part of the shift, and to illustrate how it adapts to dispersion. Besides, it is interesting to contrast
the outcome with the conclusions of Eberlein and Robaschik (2004) for a nondispersive half-
space, where they find different results when the perfect-reflector limit is taken at the start or
at the end of the calculation. We shall see, in contrast, that in our dispersive model there are
no such ambiguities: limq→∞ � reproduces (4.2) quite trivially.

We adopt the no-recoil approximation: from the perturbative energy denominators, this
drops the change in the kinetic energy of the particle, and keeps only the energy of the virtual
surface plasmon or photon. Its applicability is discussed elsewhere (Barton 1977).

The calculation requires the normal-mode amplitudes of A, related to those of E through

A(j)

k,p = (−ic/ω)E(j)

k,p, A(sp)

k = (−ic/�)E(sp)

k . (4.4)

The virtual-surface-plasmon contribution reads

�sp = −
(

Q

Mc

)2

2π

∫ ∞

0
dk k

1

h̄�

( c

�

)2
N2

k exp(−2p̃z)

(
ck

�

)2 {
P 2

z k2 +
1

2
P2

‖p̃
2

}
,

where the factor 1/2 stems from the integration of (k̂ · P‖)2 over the polar angle of k̂. Planck’s
constant disappears because the factor h̄ in N2

k cancels the factor h̄ in the energy denominator
h̄�; a similar mechanism operates in the photon contributions considered below. On changing
the integration variable to p̃, straightforward manipulation eventually yields

�sp = −
(

Q

Mc

)2 {
P 2

z

[
1

4z
+

1

8qz2

]
+

1

2
P2

‖
1

8qz2

}
. (4.5)

There are virtual-photon contributions from modes of both parities. We make the
replacements (3.2)–(3.4) etc, scale variables and find

�T E =
(

Q

Mc

)2 1

2
P2

‖
q

π

∫ ∞

0
dy y

∫ ∞

0
dx

[cos(ζx) − x sin(ζx)]

(x2 + y2)(x2 + 1)

=
(

Q

Mc

)2 1

2
P2

‖
q

4π

∫ ∞

0
dy Re

∫ ∞

−∞
dx

exp(iζx)

(x + i)

[
1

(x − iy)
− 1

(x + iy)

]
.

Only the pole at x = iy contributes to the contour integral closed (when ζ > 0) in the
upper-half x plane:

�T E = 1

2
P2

‖

(
Q

Mc

)2
q

2

∫ ∞

0
dy

exp(−ζy)

(y + 1)
= 1

2
P2

‖

(
Q

Mc

)2
q

2
exp(ζ )E1(ζ ). (4.6)

Similarly but more laboriously one finds10

�T M =
(

Q

Mc

)2
q

2π

∫ ∞

0
dy y Re

1

i

∫ ∞

−∞

dxx

(x + iy)2(x − iy)2

× exp(iζx)

(x2 + y2 + ix)

{
P 2

z y2 − 1

2
P2

‖x
2

}
= 0. (4.7)

9 Thus the particle is governed by an effective Hamiltonian Heff = P 2/2M − Q2/4 |z| + �(P). In terms of the
velocity V = ∂Heff/∂P this reads Heff = MV2/2 − Q2/4 |z| − �(MV). In other words the shift at fixed V is the
negative of the shift at fixed P.
10 The last equality in (4.7) holds for all real nonzero ζ . However, though (trivially) limζ→0 �T M = 0, the limit may
not be taken under the integrals. If, in the integrand, one were to set exp(iζx) → 0 from the start, then (4.7) would
yield finite and nonzero �z and �‖, negative and positive, respectively.
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It is remarkable that �T M vanishes for all q (i.e. not only for perfect reflectors), and the
writer can detect no advance warning of the fact directly from (4.7). There are two methods
of showing it.

The first method is ad hoc: change to plane-polar integration variables r, θ defined by
(x, y) = r(cos θ, sin θ), with 0 � r < ∞ and 0 � θ � π ; integrate over r; and observe that
the resulting function of θ is odd around the mid-point θ = π/2.

The second method is generic, and perhaps more instructive. As for T E, the contour
is closed in the upper-half x plane, yielding two contributions. One comes from the already
familiar pole due to the zero of (x2 + y2 + ix) at x = iy1 (see (3.17), (3.18), and appendix C
of B.V). As expected (see the first footnote in section 3.3), this equals −�sp. The other
contribution comes from the double pole at x = iy, and by a startling coincidence it eventually
turns out to equal +�sp, so that

�T M = �T M,pole + �T M,double pole = −�sp + �sp = 0 (4.8)

does indeed vanish. In other words, defining a total T M contribution (cf section 3.3) we find

�T Mt ≡ �T M + �sp = 0 + �sp = �sp. (4.9)

Thus the end result is

� = �T E + �sp =
(

Q

Mc

)2 {
−P 2

z

[
1

4z
+

1

8qz2

]
+

1

2
P2

‖

[
q

2
eζ E1(ζ ) − 1

8qz2

]}
. (4.10)

For large ζ it yields

� =
(

Q

Mc

)2 {
−P 2

z

[
1

4z
+

1

8qz2

]
+

1

2
P2

‖

[
1

4z
− 1

4qz2
+ O

(
1

q2z3

)]}
, (4.11)

which in the limit q → ∞ at fixed z reproduces (4.2), as promised.
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Appendix A. The order of the integrations in J TE
E

We show that, for our purposes,∫ ∞

0
dy y

∫ ∞

0

dx

x2 + 1
{−cos(ζx) + x sin(ζx)}

√
x2 + y2

=
∫ ∞

0

dx

x2 + 1
{−cos(ζx) + x sin(ζx)}

∫ ∞

0
dy y

√
x2 + y2. (A.1)

Evaluating J T E
E in section 3.2 we started with the left-hand expression, turned

∫∞
0 dx . . . at

fixed y into a far more convenient contour integral, performed
∫

dy . . . , and then
∫

dx . . . .

Now we start instead with the right-hand side of (A.1), and, before doing anything to the
x-integrand, implement

∫
dy . . . , for all that it seems to diverge. The argument hinges on the

fact that ∫ ∞

0

dx

x2 + 1
{−cos(ζx) + x sin(ζx)} = 0, (A.2)
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which allows us to drop from
∫

dy . . . any parts that are independent of x, even if they are
divergent. Thus we set∫ ∞

0
dy y

√
x2 + y2 = 1

3
(x2 + y2)3/2

∣∣∣∣∞
y=0

= ∞ − 1

3
x3 → −1

3
x3,

whence

J T E
E = − ζ 4

3π

∫ ∞

0

dxx3

x2 + 1
{− cos(ζx) + x sin(ζx)} = − ζ 4

3π

∂3

∂ζ 3

(
1 +

∂

∂ζ

)∫ ∞

0

dx sin(ζx)

x2 + 1
.

(A.3)

Finally, on rotating integration contours to the imaginary axis, the rightmost expression is seen
to agree with (3.9), as claimed.

Appendix B. The function A(ζ)

We study the function A defined by (3.24), mainly in order to establish a more flexible
representation, and convenient expansions of

{A,−A′, A′′} =
∫ ∞

0
dx exp(−ζx) tan−1(x1/2){x1/2, x3/2x5/2} (B.1)

at large and small ζ .
In fact, for large ζ one need only expand the arctangent for small values of its argument,

and integrate term by term. This yields the divergent asymptotic series

A =
∞∑

n=0

(−1)n
(n + 1)!

(2n + 1)ζ n+2
= 1

ζ 2
− 2

3ζ 3
+

6

5ζ 4
− 24

7ζ 5
+

40

3ζ 6
− 720

11ζ 7
+ · · · , (B.2)

and A′, A′′ by differentiation.
To go further, we start with the definition of A, change the integration variable to y = √

x

and integrate by parts to obtain

A = A1 + A2 + A3,

A1 = 4ζ

3

∫ ∞

0
dy y4 tan−1(y) exp(−ζy2) = −2ζ

3
A′,

(B.3)

where the last step follows on reverting from y to x;

A2 = −2ζ

3

∫ ∞

0
dy y3 exp(−ζy2) = − 1

3ζ
;

A3 = ζ

3

∫ ∞

0
dx exp(−ζx) log(1 + x) = 1

3
exp(ζ )E1(ζ ),

where again we have reverted to x and have integrated by parts. Substituting back into (B.3)
and rearranging the result, we obtain a differential equation for A, namely

A′ +
3

2ζ
A = − 1

2ζ 2
+

1

2ζ
exp(ζ )E1(ζ ). (B.4)

Multiplying with the integrating factor ζ 3/2, integrating from 0 to ζ and using the end-point
condition

lim
ζ→0

ζ 3/2A = lim
ζ→0

ζ 3/2
∫ ∞

0
dx exp(−ζx)x1/2π/2 = π3/2/4, (B.5)
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one obtains

A(ζ ) = π3/2

4ζ 3/2
− 1

ζ
+

1

2ζ 3/2
L(ζ ), L ≡

∫ ζ

0
dt t1/2 exp(t)E1(t). (B.6)

A convergent series for L and thereby for A, useful at low to moderate values of ζ , follows
from

E1(t) = −γ − log(t) −
∞∑

n=1

(−1)n
tn

n!n
. (B.7)

Then one writes the integrand of L as a power series in
√

t plus log(t) times another such
series, and integrates term by term. The result for A starts as

A = π3/2

4ζ 3/2
− 1

ζ
+

1

3

[
2

3
− γ − log(ζ )

]
+ ζ

1

5

[
7

35
− γ − log(ζ )

]
+ ζ 2 1

14

[
25

14
− γ − log(ζ )

]

+ ζ 3 1

54

[
37

18
− γ − log(ζ )

]
+ ζ 4 1

264

[
299

132
− γ − log(ζ )

]
+ · · · . (B.8)

Series for A′ and A′′ follow by differentiation.

Appendix C. Surface modes: details

There are two main reasons for considering surface plasmons in somewhat more detail than
photons.

(i) Their mean-squared fields can be found in closed form even under a cutoff. Loosely
speaking these expressions illustrate the extreme opposite to perfect reflection, where
appendix F likewise manages a cutoff in closed form, but where no surface modes are
seen. However, we recall from section 1 that, as regards the fields, cutoffs can be taken
only with a large grain of salt.

(ii) We know from B.V that the surface-mode contribution to the cohesive energy β is (a)
dominant, and (b) not subject to Born subtractions (unlike that of photons). Thus, if11

one is content to enquire into the localization only of β (which means disregarding self-
energy contributions to the mean-square fields), then to leading order the question can be
answered from a knowledge only of usp ≡ (〈E2〉sp + 〈B2〉sp)/8π.

To handle the cutoff, we recall from (1.4) the dimensionless parameters X and Z, and
(cf B.V, sections 3.2 and 3.3.2) define also their relatives

X1 ≡ {√4X2 + 1 − 1
}/

2, Z1 ≡ X1ζ = (X1/X)Z. (C.1)

Thus, for large X one has X1 � X:

X1 = X − 1/2 + O(1/X); (C.2)

on the other hand, for small X,

X1 = X2 + O(X4). (C.3)

11 The if is less restrictive than one might have thought. Without the Born subtraction, the energy density u diverges
nonintegrably as z → 0, so that there is no well-defined total quantity whose distribution u could be said to describe.
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C.1. The mean-square fields under cutoff

The mean-square fields follow directly from B.V, equations (2.23), (2.29), (2.30). We change
the integration variable from k to p̃ to p̃/q, recall Z1 = Z · (X1/X), and find12(〈E2〉sp

〈B2〉sp

)
= 2π

∫ K

0
dk kN2

k exp(−2p̃z)

(
(ck/�)2(k2 + p̃2)

k2

)

= h̄cq4

(
ζ−7/2I1 + ζ−5/2I2/2

ζ−5/2I2/2

)
, (C.4)

where (
I1(Z1)

I2(Z1)

)
≡
∫ Z1

0
dy exp(−y)

(
y5/2

y3/2

)
→

Z1→∞

(
(15

√
π/8)

(3
√

π/4)

)
. (C.5)

Comparison with the NR model (appendix D) shows that I1(·) = INR(·).
The rightmost expression in (C.5) is approached in the no-cutoff limit (K → ∞ at fixed z),

and also at large distance (z → ∞ at fixed K). Then there is little difference between (X1, Z1)

and (X,Z). Under cutoff, the exact form factors are

I1(Z1) = 15
√

π

8
erf(
√

Z1) − e−Z1

{
15

4
Z

1/2
1 +

5

2
Z

3/2
1 + Z

5/2
1

}
= 15

√
π

8
+ O
(
e−Z1Z

5/2
1

)
,

(C.6)

I2(Z1) = 3
√

π

4
erf(
√

Z1) − e−Z1

{
3

2
Z

1/2
1 + Z

3/2
1

}
= 3

√
π

4
+ O
(
e−Z1Z

3/2
1

)
. (C.7)

In contrast, as Z1 → 0 equations (C.6), (C.7) entail

I1(Z1) = 2
7Z

7/2
1 − 2

9Z
9/2
1 + . . . , I2(Z1) ≡ 2

5Z
5/2
1 − 2

7Z
7/2
1 + · · · . (C.8)

We consider only the realistic regime where X � 1. Then ζ−7/2I1 and therefore 〈E2〉sp
evidently dominate for small Z1, while ζ−5/2I2 dominates at large Z1, making 〈E2〉sp and
〈B2〉sp comparable. The cross-over occurs where I1(Z1) = ζI2 = (Z1/X1)I2(Z1), which
happens at Z1/X1 ∼ O(1), so that Z1 ∼ X1 � 1. But then the no-cutoff approximation
(C.5) applies, whence Z1 � 5X1/2 and ζ � 5/2. In other words the crossover happens at
z ∼ 1/q ∼ a2/r0 � a.

C.2. The localization of the sp field energy

To appreciate how sp field energy is distributed in space, we scale it to βsp (B.V, equation (3.6));
scale distance z to 1/2K = a/4

√
π (chosen by hindsight as a convenient alternative to a),

so that the scaled distance becomes 2Kz = Z; and write ρsp for the correspondingly scaled
dimensionless density. Then

ρsp ≡ usp

2Kβsp

= 5

16π

[I1(Z1) + Z1I2(Z1)/X1]

Z
7/2
1 [1 + 5/3X1]

. (C.9)

The crucial point is that this is a function of z only through Z1 = Z(X1/X), i.e. only through
Z. Therefore usp is concentrated within distances from the sheet of order 1/K ∼ a.

12 For photon modes, section 3 introduced form factors J such that, for instance, 〈E2〉T E = (
h̄cq4/ζ 4

)
J T E

E (ζ ),
a definition constructed so that J T E

E (∞) is a finite constant determined by the perfect-reflector limit (appendix F).
This is not a natural normalization for sp contributions, which behave differently at large z; but for purposes of
comparison we note that the correspondingly normed sp form factors would be related to I1,2 by J sp

1 = ζ 1/2I1 and
J sp

2 = ζ 3/2I2.
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The analogous demonstration for the NR model is even simpler, and follows on
dimensional grounds alone, as in appendix D below. In contrast, retarded u, having the
extra input parameter c, can contain contributions proportional to h̄c/z4, as the archetypal
perfect-reflector limits of the mean-square fields famously do. Hence for usp dimensional
argument fail, and only explicit calculation can serve.

C.3. Excitation of surface modes

Since surface plasmons cannot be excited by photons, it is instructive to calculate the rate �sp

of their emission by an excited atom a distance z from the sheet. (We do not pursue here the
classic problem of how the sheet affects the emission rates of photons.)

For z much greater than the atomic radius, one can use the dipole approximation to the
interaction Hamiltonian, writing it as

Hint = −D · E, (C.10)

where D is the atomic dipole-moment operator, with matrix elements Df i between the initial
and final atomic states i and f . The Golden Rule of time-dependent perturbation theory and
the expansion of E (equations (2.23), (2.29), (2.30) in B.V) then yield

�sp = 2π

h̄

∫
d2k exp(−2p̃z)

∣∣Df i · (ẑk − ik̂p̃)
∣∣2 δ(Eif − h̄�(k)). (C.11)

With the integrand re-expressed as a function of p̃, the delta function prescribes � = Eif /h̄,
and eventually one finds

p̃ = �2

c2q
= E2

if

h̄2c2q
,

�sp = 2πe−2p̃z

(
Eif

h̄c

)4 1

qh̄

{
D2

zf i

[(
Eif

h̄cq

)2

+ 1

]
+

1

2
D2

‖f i

(
Eif

h̄cq

)2
}

.

(C.12)

Since Eif and the matrix elements are fixed, the PR limit, via q → ∞, entails p̃ → 0.
This appears to make the rate independent of z, and a paradox is avoided only because in fact
�sp vanishes (even when z = 0):

�sp → 2π

(
Eif

h̄c

)4 1

qh̄
D2

zf i → 0. (C.13)

Appendix D. The nonretarded model

This model was introduced in BV, appendix B; here we study only its field-energy density
uNR . We recall �NR = c2qk, and start under a cutoff, as did appendix C:

8πuNR(z) = h̄c
√

q

(
K

Z

)7/2

INR(Z), INR(Z) ≡
∫ Z

0
dy y5/2 exp(−y), (D.1)

INR(Z) = 15
√

π

8
erf(

√
Z) − exp(−Z)

[
15

4
Z1/2 +

5

2
Z3/2 + Z5/2

]
, (D.2)

INR(Z → 0) = 2

7
Z7/2 − 2

9
Z9/2 + O(Z11/2), (D.3)

INR(Z → ∞) = 15π1/2/8 + O(e−ZZ5/2). (D.4)
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The no-cutoff limit evidently reads

u
(NC)
NR (z) ≡ lim

K→∞
uNR(z), 8πu

(NC)
NR (z) = h̄c

√
q

z7/2

15π1/2

64
√

2
. (D.5)

Without retardation it is especially easy to show that, while the kinetic energy κNR

naturally resides on the sheet, the Coulomb energy UNR ≡ 2
∫∞

0 dzuNR = βNR − κNR is
concentrated within a distance of order a from the sheet13. We merely scale in the way already
motivated in appendix C.2, i.e. energy to βNR and the distance z to 1/2K = a/4

√
π , so that

the scaled distance becomes Z; and then write ρNR for the correspondingly scaled density of
the field energy:

ρNR = uNR

2KβNR

= 5

8

INR(Z)

Z7/2
. (D.6)

This proves the point in virtue simply of the fact that ρNR depends on z only through Z.
In fact the conclusion could have been anticipated dimensionally, given that, by

construction, both β and u are proportional to h̄. Because the only other NR input parameters
are a, e2 and m, one must have βNR ∼ h̄

√
e2/ma7 and uNR ∼ h̄

√
e2/mz5g(z/a), with

g a dimensionless function of its dimensionless argument; whence ρNR ∼ auNR/βNR ∼
g(z/a)(z/a)−5/2, a function only z/a, as claimed.

Appendix E. 〈E2〉 and 〈B2〉 under cutoff

E.1. Preliminaries

We consider only the realistic regime where X � 1 (which excludes formally near-perfect
reflection), and recall Z = Xζ . Further, we shall concentrate on small Z (where a fortiori
ζ = Z/X � 1), because (i) cutofff dependence at arbitrary Z is extremely tedious both to
calculate and to display; while (ii) it will appear presently that, as anticipated in section 1, for
large Z the cutoff makes only a negligible difference, of relative order exp(−Z). Accordingly,
and so as to avoid intolerable complication, we aim to be accurate only up to terms that vanish
as Z and/or 1/X tend to zero. Of course one must bear in mind that, with or without cutoff, for
the fields at z � a, i.e. at ζ = 2πqa ∼ α2 ∼ 10−4, the detailed assertions of our continuum
model are indicative at best, because the physics then depends appreciably on the microscopic
(hence granular) structure of the material.

Starting with the photon modes, one allows for the sp modes by dropping the pole
contribution to a T M contour integral in the complex p plane, much as in section 3.3. We
settle for a very rough outline of the T E calculation, with the T M results merely quoted.

The integration variables k and p are scaled to y, x as before, but rather than focus on the
form factors J defined as in section 3, we now write

〈E2〉 = h̄cq4

π
FE, FE = (π/ζ 4)JE, (E.1)

FE =
{∫ ∞

0
dx

∫ x

0
dy −

∫ ∞

X

dx

∫ x

X

dy

}
exp(−ζx)fE(x, y) ≡ FENC − FE3, (E.2)

and similarly for 〈B2〉. The fE,B are algebraic functions; f
T E,T M
E , say, are identifiable

from (3.8) and from (3.16). Evidently FNC is the no-cutoff result, while F3 subtracts the

13 The corresponding argument for a spherical shell, as laid out in section 3.2 of B.IV, mis-identifies the range of
radial distances where it applies; also it suffers from an algebraic slip. The corrections are given in an erratum (Barton
2004c), which shows that the original conclusions are nevertheless substantially correct.
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contributions from the modes having k > K , which are eliminated by the cutoff. To
exploit this subdivision, one splits the pertinent part y < x of the positive quadrant of
the xy plane into three: region 1 with (x < X, y < x), region 2 with (x > X, y < X)

and region 3 with (x > X,X < y < x). Without a cutoff the integral runs over all
three regions (i.e. FNC = F1 + F2 + F3); with a cut-off it runs only over regions 1 and 2
(F = F1 + F2 = FNC − F3). Numerically, and especially at small distances, one might
prefer to work with F1 +F2, which avoids expressions that diverge as ζ → 0; but analytically
F3 proves more accessible.

Changing integration variables to (ξ, η) ≡ (x/X, y/X), so that
∫ x

X
dy exp(−ζx) · · · =

X
∫ ξ

1 dη exp(−Zη) . . . , we see at once that for large Z all cutoff-dependent terms are indeed
small to the tune of exp(−Xζ) = exp(−Z), as claimed above.

E.2. Results

From (3.8) for FT E
ENC and from (E.2) one obtains

FT E
E3 =

∫ ∞

X

dx

∫ x

X

dy
exp(−ζx)

x + 1
y
√

x2 − y2 = X3 exp(Z/X)

∫ ∞

Z

dξ exp(−ξ/X)
K2(ξ)

ξ 2
.

(E.3)

Recall K2(ξ → 0) � 2/ξ 2 and K2(ξ → ∞) � √
π/2 exp(−ξ).

What interests us here is the regime where not only ζ � 1 but also Z � O(1), and
especially the limit Z → 0. Then the integral is dominated by moderate values of ξ , so that
one can expand

exp(−ξ/X) � 1 − ξ/X + ξ 2/2X2 − ξ 3/6X3 + · · · (E.4)

and integrate term by term. The essential points are (a) that (E.4) is an expansion by powers
of 1/X, and (b) that the terms dropped from (E.4) contribute to (E.3) only integrals that would
converge if extended down to ξ = 0. Hence, in view of the factor X3 of (E.3), and accurately
up to terms that vanish as X → ∞, one need keep only the four terms actually spelled out in
(E.4). It is a further bonus that the integrals in question are all trivial to approximate for small
Z. We evaluate them, substitute them into (E.3), re-expand in powers of Z, and finally express
the result in terms of ζ and X (instead of Z and X). Then one finds

FT E
E3 = 2

3ζ 3
− 1

3ζ 2
−
[
X2

2
− 1

3

]
1

ζ
− 1

2
X2

[
log

(
Xζ

2

)
+ γ

]
+

1

3

[
log

(
Xζ

2

)
+ γ

]
+

[
π

6
X3 − 1

4
X2 − π

4
X +

4

9

]
+ O(ζ log(ζ )) + O(X−1).

(E.5)

According to (E.2) this must be subtracted from

FT E
ENC(ζ → 0) = 1

3

{
2

ζ 3
− 1

ζ 2
+

1

ζ
+ log(ζ ) + γ

}
+ O(ζ log(ζ ), (E.6)

obtainable from (3.12). The terms with ζ−3, ζ−2 and with ζ−1 and log(ζ ) but without X
cancel, and the end result reads

FT E
E � X2

2ζ
− X3 π

6
+ X2

[
1

2
log

(
Z

2

)
+

γ

2
+

1

4

]
+ X

π

4
+ log

(
X

2

)
− 4

9
. (E.7)

Parallel calculations yield

FT E
B � −X2

2ζ
− X3 π

6
− X2

[
1

2
log

(
Z

2

)
+

γ

2
− 3

4

]
− X

3π

4
+

14

9
, (E.8)
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FT Mt
E � X2

2ζ
+ X7/2 2π

7
− X3 11

12
+ X5/2 π

5
+ X2

[
1

2
log (Z) +

γ

2
+

1

48

]
+ X

13

30
+

1233

4900
,

(E.9)

FT Mt
B � −X2

2ζ
+ X5/2 π

5
− X2

[
1

2
log (Z) +

γ

2
+

15

64

]
− X

25

48
+

311

800
. (E.10)

Thus

FE ≡ FT E
E + FT Mt

E = X2

ζ
+ X7/2 2π

7
+ O(X3), (E.11)

FB ≡ FT E
B + FT Mt

B = −X2

ζ
+ O(X3). (E.12)

In contrast, from the combinations FT E
u ≡ FT E

E + FT E
B and FT Mt

u ≡ FT Mt
E + FT Mt

B the terms
proportional X2/ζ cancel.

E.3. Comments

• It is only at large ζ , where the dispersive corrections have become negligible, that 〈E2〉
becomes directly measurable through the Casimir–Polder potential VCP from (1.3). But
then, a fortiori, Z � 1, so that the cutoff has become irrelevant as well.

• No paradox attaches to the fact that even under the cutoff 〈E2〉 and
〈
B2
〉
diverge as z → 0,

because these mean-square fields include contributions from the self-fields of the fluid.
Indeed, in the present context it matters little whether the energy density u = 〈E2 + B2〉/8π

is likewise divergent; nor even whether it is integrable.
• In fact, (E.11), (E.12) yield

Fu ≡ FE + FB = X7/2 2π

7
+ O(X3) : (E.13)

the terms featuring ±X2/2ζ have cancelled, so that u = (h̄cq4/8π2)Fu does remain finite
down to z = 0. Its leading term

hcq4

π
Fu � h̄cq1/2K7/2

4π · 7
= h̄K7/2

2

√
ne2

2πm

tallies with (D.1), (D.3) from the NR model, though the writer sees no a priori reason
why it should.

• Reverting to 〈E2〉, we see that as ζ increases from zero, the initially divergent and therefore
nominally dominant component X2/2ζ is overtaken by the nonretarded component
2πX7/2/7 when ζ ∼ X−3/2, which means z ∼ √

ar0 = a
√

r0/a ∼ aα = λc/2π � a. In
other words the possibly surprising retardation effects right next to the sheet are confined
to a region so narrow that for any half-way practical purposes they are irrelevant.

Appendix F. Perfect reflectors

Perfect reflection at all frequencies, i.e. T (+) → 0,R(+) → −1, requires q → ∞, so that
X → 0. In our model this scenario is unrealistic; nevertheless it is of some formal interest,
because it is so widely discussed, and because the limit presents paradoxes that, undiagnosed,
have caused confusion. One example appears at the end of appendix F.1.2, and another in
appendix F.2.
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F.1. Perfect reflection ab initio

F.1.1. Without cutoff. Here one starts with the familiar expansions, in the half-space z > 0,
of fields that are subject from the outset to the perfect-reflector boundary conditions

E(PR)
‖ = 0, B(PR)

z = 0 (z = 0).

Then one sees no surface modes, and, adapting the notation of section 2.2 of B.V one has14

F(PR)j =
∫

d2k

∫ ∞

0
dp

√
h̄ω

π2k2
a

(PR)j

k,p F(PR)j

k,p + Hc, (F.1)

(
E(PR)T E

k,p , B(PR)T E
k,p , E(PR)T M

k,p , B(PR)T M
k,p

)
= exp(−iωt + ik · s)

×


i(k̂ × ẑ)k sin(pz)

(ck/ω){−iẑk sin(pz) + k̂p cos(pz)}
(ck/ω){−iẑk cos(pz) − k̂p sin(pz)}

−i(k̂ × ẑ)k cos(pz)

 , (z > 0). (F.2)

The amplitudes are
√

2 times those of the odd-parity modes: appendix F.2 explains why.
The reader should be warned straightaway that, as regards the physics of imperfect

reflectors, one is badly misled by almost every qualitative conclusion that it might seem
plausible to infer from (F.2).

The zero-point mean-square fields follow at once. Defining

ν ≡
√

k2 + p2

we find(〈E2〉T E, 〈B2〉T E, 〈E2〉T M, 〈B2〉T M

)
= 2π

∫ ∞

0
dk k

∫ ∞

0
dp

h̄cν

π2k2


k2 sin2(pz)

(k/ν)2[k2 sin2(pz) + p2 cos2(pz)]
(k/ν)2[k2 cos2(pz) + p2 sin2(pz))]

k2 cos2(pz)


→ h̄c

π

∫ ∞

0
dkk

∫ ∞

0
dp cos(2pz)(−ν, (p2 − k2)/ν,−(p2 + k2)/ν, ν), (F.3)

where the arrow replaces (cos2(pz), sin2(pz)) → ± cos(2pz)/2, dropping terms that are
independent of z, and are therefore cancelled when one subtracts the mean-square fields in the
absence of the mirror. Ahead of any integrations, one sees that

〈E2〉(PR)
T M = −〈B2〉(PR)

T E , 〈B2〉(PR)
T M = −〈E2〉(PR)

T E . (F.4)

For perfect reflectors it will therefore suffice to display only the T E expressions.
There are several ways of evaluating these expectation values. The traditional method,

not readily adapted to a cutoff, reverses the order of integration, replaces
∫∞

0 dkk . . . →∫∞
p

dνν . . . , and then, as symbolized by another arrow, drops the contributions from the upper

limit because, being independent of p (although divergent15) they yield only terms proportional

14 In this section we drop the labels (PR), except from end results.
15 In fact the word ‘although’ is misleading, because it is precisely their divergence that makes these terms independent
of p.
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to
∫∞

0 dp cos(2pz) = (π/2)δ(z), which vanish everywhere off the sheet. This yields(〈E2〉, 〈B2〉)(PR)

T E
= h̄c

π

∫ ∞

0
dp cos(2pz)

∫ ∞

p

dν(−ν2,−ν2 + 2p2),(〈E2〉
〈B2〉

)(PR)

T E

→ h̄c

π

∫ ∞

0
dp cos(2pz)p2 1

3

(
1

−5

)
= h̄c

8πz4

(
1

−5

)
.

(F.5)

The last step uses an identity standard for generalized functions, namely∫ ∞

0
dp cos(2pz)p3 = −1

8

∂3

∂z3

∫ ∞

0
dp sin(2pz) = −1

8

∂3

∂z3

(
1

2z

)
= 3

8z4
.

Accordingly16 (〈E2〉
〈B2〉

)(PR)

=
(〈E2〉T E+T M

〈B2〉T E+T M

)(PR)

= ± 3h̄c

4πz4
= ±h̄cq4

π

12

ζ 4
. (F.6)

F.1.2. With cutoff. Equations (F.6) apply without a cutoff. With a cutoff we choose
a more flexible method, which reverts to (F.3); replaces

∫∞
0 dp cos(2pz) . . . →

(1/2)Re
∫∞
−∞ dp exp(i2pz) . . . ; and (for z > 0) closes the contour in the upper-half complex

p plane, with a hair-pin detour around the cut (due to ν) from p = ik to i∞. On the right and
left of the cut, where p = iy ± 0, we have ν = ±i

√
y2 − 1. Scaling via y = kx, one readily

finds

〈E2, B2〉T E = h̄c

π

∫ K

0
dk k3

∫ ∞

1
dx exp(−2kzx)

(√
x2 − 1,−[√x2 − 1 + 2/

√
x2 − 1

])
= h̄c

π

∫ K

0
dk k3 (K1(2kz)/2kz,− [K1(2kz)/2kz + 2K0(2kz)]) ,

where we have used∫ ∞

1
dt exp(−ξ t)(t2 − 1)n−1/2 = �(n + 1/2)√

π

(
2

ξ

)n

Kn(ξ). (F.7)

The remaining integrals are elementary, and the end results, formatted to match (F.5), read(〈E2〉
〈B2〉

)(PR)

T E

= h̄c

8πz4

(
[1 − Z2K2(Z)/2]

−[5 − 5Z2K2(Z)/2 − Z3K1(Z)]

)
, (F.8)

whence

〈E2〉(PR) = 〈E2〉(PR)
T E+T M = 〈E2〉(PR)

T E − 〈B2〉(PR)
T E = −〈B2〉(PR)

= h̄c

8πz4
{6 − 3Z2K2(Z) − Z3K1(Z)}. (F.9)

Since Z ≡ 2Kz, we see that K → ∞ and z → 0 are incompatible. For large Z, we have
another illustration of the general fact that for large Z cutoff-dependent corrections vanish
exponentially fast, i.e. proportionally to exp(−Z). For small Z,

〈E2〉(PR) = −〈B2〉(PR) = h̄cK2

8πz2

{
2 + 2(Kz)2

[
log

(
1

Kz

)
− γ − 1

4

]
+ O(Kz)4

}
. (F.10)

Finally we observe that, for perfect reflection and off the mirror, the total field-energy
density of the photon modes vanishes, with or without a cutoff. This observation, and the com-
mon misidentification of the surface energy β with 2

∫∞
0 dzu, are probably responsible for the

16 The rightmost expression is alien to perfect reflection (where q → ∞), but fits our notation for dispersive sheets.
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widespread delusion that the surface energy of perfect reflectors vanishes: whereas we already
know from section 3.4 of B.V that, as the perfect-reflector limit is approached, i.e. as q → ∞
at fixed K, one has β � −(h̄cqK2/4π2) log(2q/K), which tends not to zero but to −∞.

F.2. Perfect reflection as a limit

We conclude by showing that the perfect-reflector limit turns the left-hand and the right-hand
half-spaces into electromagnetically disjoint and quantally independent systems, with a direct-
product overall Hilbert space. Though this could perhaps be regarded as an intuitively obvious
consequence of separation by a perfect mirror, in our model it might appear paradoxical,
because the odd-parity (half the total) normal modes know nothing of q, and are therefore
unaffected as q → ∞. The paradox, if it is one, was anticipated at the end of section 2.1 in
B.V, and is resolved automatically by proving the disjuncture.

The proof starts by noting that q → ∞ entails

η,µ → −π/2 ⇒
(

cos(pz + (η, µ))

sin(pz + (η, µ))

)
→
(

sin(pz)

− cos(pz)

)
. (F.11)

Thus for z > 0 the even-parity (interacting) photon modes become identical to the
corresponding odd-parity (noninteracting) modes17. This allows one to change (unitarily
transform to) new modes labelled R,L, whose annihilation operators and amplitudes are

a
(R,L)
k,p =

(
a

(+)
k,p ± a

(−)
k,p

)/√
2,

[
a

(R)+
k,p , a

(L)
k,p

] = 0, F(R,L)
k,p = (F(+)

k,p ± F(−)
k,p

)/√
2,

(F.12)

where for simplicity we have suppressed the polarization index.
For z > 0, the new modes F(R)

k,p = √
2F(−)

k,p are precisely those that one introduces when
quantizing the Maxwell field to the right of a perfectly reflecting surface (see, e.g., Barton
(1974)), with no questions asked about any physics to its left. This is the origin of the factor√

2 remarked on just below (F.2).
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